The groupoids of adaptable separated graphs and their type semigroups (II)

Pere Ara

Universitat Autònoma de Barcelona

Higher rank graphs: geometry, symmetry, dynamics ICMS, July 16, 2019.

イロト イポト イヨト イヨト

P.A., J. BOSA, E. PARDO, A. SIMS, The groupoids of adaptable separated graphs and their type semigroups

arXiv:1904.05197v2 [math.RA].

P.A., J. BOSA, E.PARDO, The realization problem for finitely generated refinement monoids

ヘロト ヘ戸ト ヘヨト ヘヨト

arXiv:1907.03648 [math.RA].

Outline

- Steinberg algebras
 - Definition
 - Tight representations
 - The algebra isomorphism
- 2 Type semigroups
 - The type semigroup of a Boolean inverse semigroup

イロト イポト イヨト イヨト

- The type semigroup of an ample groupoid
- The realization problem for von Neumann regular rings
 - Some history
 - Universal localization
 - 4 The representation theorem
 - The results
 - The proof

Steinberg algebras

Type semigroups The realization problem for von Neumann regular rings The representation theorem Definition Fight representations The algebra isomorphism

イロト イポト イヨト イヨト

Outline

- Steinberg algebras
 - Definition
 - Tight representations
 - The algebra isomorphism
- Type semigroups
 - The type semigroup of a Boolean inverse semigroup
 - The type semigroup of an ample groupoid
- 3 The realization problem for von Neumann regular rings
 - Some history
 - Universal localization
- 4 The representation theorem
 - The results
 - The proof

Definition Tight representations The algebra isomorphism

Definition (Steinberg)

Given an ample groupoid \mathcal{G} , and a field with involution (K, *), the *Steinberg algebra* associated to \mathcal{G} is defined to be the *-algebra over K

 $A_K(\mathcal{G}) = \operatorname{span}\{1_B : B \text{ is an open compact bisection }\}$

with the convolution product

$$(fg)(\gamma) = \sum_{\substack{(\gamma_1, \gamma_2) \in \mathcal{G}^{(2)} \\ \gamma_1 \gamma_2 = \gamma}} f(\gamma_1) g(\gamma_2).$$

and the involution $f^*(\gamma) = f(\gamma^{-1})^*$.

Definition Tight representations The algebra isomorphism

When \mathcal{G} is Hausdorff, $A_K(\mathcal{G})$ is just the *-algebra of compactly supported, locally constant functions $f: \mathcal{G} \to K$.

It is interesting to notice that $1_B 1_D = 1_{BD}$, whenever *B* and *D* are compact open bisections in *G*.

Definition Tight representations The algebra isomorphism

イロト イポト イヨト イヨト

When \mathcal{G} is Hausdorff, $A_K(\mathcal{G})$ is just the *-algebra of compactly supported, locally constant functions $f: \mathcal{G} \to K$.

It is interesting to notice that $1_B 1_D = 1_{BD}$, whenever *B* and *D* are compact open bisections in *G*.

Definition Tight representations The algebra isomorphism

Let S be an inverse semigroup with 0, and denote by \mathcal{E} its semilattice of idempotents.

If $F \subseteq \mathcal{E}$ is any subset, then a finite subset $\Sigma \subseteq F$ is a **finite cover** of *F* when for any $0 \neq f \in F$ there exists $e \in \Sigma$ such that $fe \neq 0$.

Definition Tight representations The algebra isomorphism

Let S be an inverse semigroup with 0, and denote by \mathcal{E} its semilattice of idempotents.

If $F \subseteq \mathcal{E}$ is any subset, then a finite subset $\Sigma \subseteq F$ is a **finite cover** of *F* when for any $0 \neq f \in F$ there exists $e \in \Sigma$ such that $fe \neq 0$.

Steinberg algebras

Type semigroups The realization problem for von Neumann regular rings The representation theorem Definition Tight representations The algebra isomorphism

Definition

[Exel, Steinberg] Let S be an inverse semigroup, and A be a *-algebra over a field with involution K. Then, we say that $\pi: S \to A$ is a *representation* if $\pi(st) = \pi(s)\pi(t)$ and $\pi(s^*) = \pi(s)^*$ for all $s, t \in S$. A representation π is said to be a *tight representation* if for every idempotent $e \in \mathcal{E}$ and every finite cover Z of $\mathcal{F}_e := \{f \in \mathcal{E} \mid f \leq e\}$, we have

$$\pi(e) = \bigvee_{z \in Z} \pi(z)$$

in the (generalized) Boolean algebra of idempotents of the commutative *-subalgebra $A_{\mathcal{E}}$ of A generated by $\pi(\mathcal{E})$.

Definition Tight representations The algebra isomorphism

We say that a *-algebra A, together with a tight representation $\iota: S \to A$, is *universal for tight representations* if given any *-algebra B and any tight representation $\phi: S \to B$, there is a unique *-homomorphism $\tilde{\phi}: A \to B$ such that $\tilde{\phi} \circ \iota = \phi$. By the usual argument, such a universal tight *-algebra is unique up to *-isomorphism.

Theorem (Steinberg 2016)

Let *S* be a Hausdorff inverse semigroup with zero and let *K* be a field with involution. Then $A_K(\mathcal{G}_{tight}(S))$ is the universal *-algebra for tight representations of *S*.

Definition Tight representations The algebra isomorphism

We say that a *-algebra A, together with a tight representation $\iota: S \to A$, is *universal for tight representations* if given any *-algebra B and any tight representation $\phi: S \to B$, there is a unique *-homomorphism $\tilde{\phi}: A \to B$ such that $\tilde{\phi} \circ \iota = \phi$. By the usual argument, such a universal tight *-algebra is unique up to *-isomorphism.

Theorem (Steinberg 2016)

Let *S* be a Hausdorff inverse semigroup with zero and let *K* be a field with involution. Then $A_K(\mathcal{G}_{tight}(S))$ is the universal *-algebra for tight representations of *S*.

Definition Tight representations The algebra isomorphism

Recall that we have introduced in the first talk a list of generators and relations associated to an adaptable separated graph.

Definition

Let (E, C) be an adaptable separated graph and K be a field. The K-algebra $S_K(E, C)$ is the *-algebra over K with generators

$$E^{0} \cup E^{1} \cup \{(t_{i}^{v})^{\pm} : i \in \mathbb{N}, v \in E^{0}\}$$

and defining relations given in the first talk (Block 1 and Block 2) (including this time *all* the relations)

Definition Tight representations The algebra isomorphism

Let $\iota: S(E,C) \to \mathcal{S}_K(E,C)$ be the natural representation of S(E,C) into $\mathcal{S}_K(E,C)$.

Theorem

The map $\iota : S(E,C) \to S_K(E,C)$ is universal for tight representations of S(E,C) on *-algebras over K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─���

Definition Tight representations The algebra isomorphism

Let $\iota: S(E,C) \to \mathcal{S}_K(E,C)$ be the natural representation of S(E,C) into $\mathcal{S}_K(E,C)$.

Theorem

The map $\iota: S(E,C) \to \mathcal{S}_K(E,C)$ is universal for tight representations of S(E,C) on *-algebras over K.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣んで

Steinberg algebras

Type semigroups The realization problem for von Neumann regular rings The representation theorem Definition Tight representations The algebra isomorphism

Theorem

Let (E, C) be an adaptable separated graph, let S(E, C) be the inverse semigroup associated to (E, C), let K be a field with involution and let $S_K(E, C)$ be the *-algebra over K associated to (E, C). Let $A_K(\mathcal{G}_{tight}(S(E, C)))$ be the Steinberg algebra of the tight groupoid $\mathcal{G}_{tight}(S(E, C))$. There is a *-isomorphism

 $\mathcal{S}_K(E,C) \cong A_K(\mathcal{G}_{tight}(S(E,C)))$

sending $\iota(s) \in \mathcal{S}_K(E, C)$ to $1_{\Theta(s, D_{s^*s})}$ for each $s \in S(E, C)$.

▲口 > ▲圖 > ▲国 > ▲国 > 「国 」 今 Q ()~

Steinberg algebras Type semigroups

The realization problem for von Neumann regular rings The representation theorem The type semigroup of a Boolean inverse semigroup The type semigroup of an ample groupoid

イロト イポト イヨト イヨト

Outline

- Steinberg algebras
 - Definition
 - Tight representations
 - The algebra isomorphism
- 2 Type semigroups
 - The type semigroup of a Boolean inverse semigroup
 - The type semigroup of an ample groupoid
- 3 The realization problem for von Neumann regular rings
 - Some history
 - Universal localization
- 4 The representation theorem
 - The results
 - The proof

Let *S* be an inverse semigroup (always with 0). We denote by $\mathcal{E}(S)$ the semilattice of idempotents of *S*. We say that $x, y \in S$ are orthogonal, written $x \perp y$ if $x^*y = yx^* = 0$ Recall that a *Boolean inverse semigroup* is an inverse semigroup *S* such that $\mathcal{E}(S)$ is a generalized Boolean lattice, and such that every pair $x, y \in S$ satisfying $x \perp y$ has a supremum, denoted $x \oplus y \in S$

The type semigroup of a Boolean inverse semigroup The type semigroup of an ample groupoid

Definition (Wehrung 2017)

Let S be a Boolean inverse semigroup. The *type semigroup* (or type monoid) of S is the commutative monoid $\operatorname{Typ}(S)$ freely generated by elements $\operatorname{typ}(x)$, where $x \in \mathcal{E}(S)$, subject to the relations

)
$$typ(0) = 0$$
,

2 $\operatorname{typ}(x) = \operatorname{typ}(y)$ whenever $x, y \in \mathcal{E}(S)$ and there is $s \in S$ such that $ss^* = x$ and $s^*s = y$.

• $typ(x \oplus y) = typ(x) + typ(y)$ whenever x, y are orthogonal elements in $\mathcal{E}(S)$.

By a result of Wehrung, Typ(S) is a conical refinement monoid.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The type semigroup of a Boolean inverse semigroup The type semigroup of an ample groupoid

Definition (Wehrung 2017)

Let S be a Boolean inverse semigroup. The *type semigroup* (or type monoid) of S is the commutative monoid $\operatorname{Typ}(S)$ freely generated by elements $\operatorname{typ}(x)$, where $x \in \mathcal{E}(S)$, subject to the relations

)
$$typ(0) = 0$$
,

2 $\operatorname{typ}(x) = \operatorname{typ}(y)$ whenever $x, y \in \mathcal{E}(S)$ and there is $s \in S$ such that $ss^* = x$ and $s^*s = y$.

• $typ(x \oplus y) = typ(x) + typ(y)$ whenever x, y are orthogonal elements in $\mathcal{E}(S)$.

By a result of Wehrung, Typ(S) is a conical refinement monoid.

Let \mathcal{G} be a (not-necessarily-Hausdorff) étale groupoid, with a Hausdorff locally compact unit space $X := \mathcal{G}^{(0)}$. Then the collection $S(\mathcal{G})$ of all compact open bisections of \mathcal{G} forms a Boolean inverse semigroup.

Definition

Let \mathcal{G} be a (non-necessarily Hausdorff) étale groupoid, with a Hausdorff locally compact base space $X := \mathcal{G}^{(0)}$. We define the *type semigroup* of \mathcal{G} as

 $\operatorname{Typ}(\mathcal{G}) = \operatorname{Typ}(S(\mathcal{G})).$

If \mathcal{G} is second countable, then the type semigroup $\operatorname{Typ}(\mathcal{G})$ is a countable conical refinement monoid.

Let \mathcal{G} be a (not-necessarily-Hausdorff) étale groupoid, with a Hausdorff locally compact unit space $X := \mathcal{G}^{(0)}$. Then the collection $S(\mathcal{G})$ of all compact open bisections of \mathcal{G} forms a Boolean inverse semigroup.

Definition

Let \mathcal{G} be a (non-necessarily Hausdorff) étale groupoid, with a Hausdorff locally compact base space $X := \mathcal{G}^{(0)}$. We define the *type semigroup* of \mathcal{G} as

 $\operatorname{Typ}(\mathcal{G}) = \operatorname{Typ}(S(\mathcal{G})).$

If \mathcal{G} is second countable, then the type semigroup $\operatorname{Typ}(\mathcal{G})$ is a countable conical refinement monoid.

Let \mathcal{G} be a (not-necessarily-Hausdorff) étale groupoid, with a Hausdorff locally compact unit space $X := \mathcal{G}^{(0)}$. Then the collection $S(\mathcal{G})$ of all compact open bisections of \mathcal{G} forms a Boolean inverse semigroup.

Definition

Let \mathcal{G} be a (non-necessarily Hausdorff) étale groupoid, with a Hausdorff locally compact base space $X := \mathcal{G}^{(0)}$. We define the *type semigroup* of \mathcal{G} as

 $\operatorname{Typ}(\mathcal{G}) = \operatorname{Typ}(S(\mathcal{G})).$

If \mathcal{G} is second countable, then the type semigroup $\operatorname{Typ}(\mathcal{G})$ is a countable conical refinement monoid.

The type semigroup of a Boolean inverse semigroup The type semigroup of an ample groupoid

Theorem

Let (E, C) be an adaptable separated graph, S(E, C) be the inverse semigroup associated to (E, C), and let $\mathcal{G}_{tight}(S(E, C))$ be the groupoid of germs associated to the canonical action of S(E, C) on the space of ultrafilters $\hat{\mathcal{E}}_{\infty}$. Then, there is a monoid isomorphism

$$\psi \colon M = M(E, C) \to \operatorname{Typ}(\mathcal{G}_{tight}(S(E, C)))$$

such that $\psi(a_v) = [\mathcal{Z}(v)]$ for every $v \in E^0$.

▲口 > ▲圖 > ▲国 > ▲国 > 「国 」 今 Q ()~

The type semigroup of a Boolean inverse semigroup The type semigroup of an ample groupoid

イロト イポト イヨト イヨト

Corollary

Let M be a finitely generated conical refinement monoid. Then there is an adaptable separated graph (E, C) such that

 $M \cong \operatorname{Typ}(\mathcal{G}_{tight}(S(E,C))).$

In particular, all finitely generated conical refinement monoids arise as type semigroups of ample Hausdorff groupoids.

Some history Universal localization

イロト イポト イヨト イヨト

Outline

- Steinberg algebras
 - Definition
 - Tight representations
 - The algebra isomorphism
- 2 Type semigroups
 - The type semigroup of a Boolean inverse semigroup
 - The type semigroup of an ample groupoid
- The realization problem for von Neumann regular rings
 - Some history
 - Universal localization
 - 4 The representation theorem
 - The results
 - The proof

Some history Universal localization

Definition

A ring *R* is *von* Neumann regular if $\forall x \in R \exists y \in R$ such that x = xyx.

Von Neumann regular rings were invented by John von Neumann in 1936 to coordinatize certain lattices L (meaning that $L \cong L(R_R)$).

Murray and von Neumann also considered a particular example of regular rings in Analysis: If $\mathcal{N} \subseteq B(H)$ is a finite von Neumann algebra, then the *-algebra \mathcal{U} of all the unbounded densely defined operators affiliated to \mathcal{N} is a *-regular complex algebra.

Some history Universal localization

Definition

A ring R is von Neumann regular if $\forall x \in R \exists y \in R$ such that x = xyx.

Von Neumann regular rings were invented by John von Neumann in 1936 to coordinatize certain lattices L (meaning that $L \cong L(R_R)$).

Murray and von Neumann also considered a particular example of regular rings in Analysis: If $\mathcal{N} \subseteq B(H)$ is a finite von Neumann algebra, then the *-algebra \mathcal{U} of all the unbounded densely defined operators affiliated to \mathcal{N} is a *-regular complex algebra.

Some history Universal localization

Definition

A ring R is von Neumann regular if $\forall x \in R \exists y \in R$ such that x = xyx.

Von Neumann regular rings were invented by John von Neumann in 1936 to coordinatize certain lattices L (meaning that $L \cong L(R_R)$).

Murray and von Neumann also considered a particular example of regular rings in Analysis: If $\mathcal{N} \subseteq B(H)$ is a finite von Neumann algebra, then the *-algebra \mathcal{U} of all the unbounded densely defined operators affiliated to \mathcal{N} is a *-regular complex algebra.

Some history Universal localization

イロト イポト イヨト イヨ

\bullet The *-algebra ${\cal U}$ coordinatizes the lattice ${\it L}$ of all projections of ${\cal N}.$

• If Γ is a discrete group, the algebra $\mathcal{U}(\Gamma)$ is the *-regular ring of $\mathcal{N}(\Gamma)$, the von Neumann algebra of Γ . The *-regular ring $\mathcal{U}(\Gamma)$ and its various subrings play an important role in the study of various conjectures, such as the Atiyah Conjecture on l^2 -Betti numbers.

• It is well-known that \mathcal{U} is the *classical ring of quotients* of \mathcal{N} , so the extension $\mathcal{N} \subset \mathcal{U}$ is given by an *Ore localization*

- \bullet The *-algebra ${\cal U}$ coordinatizes the lattice ${\it L}$ of all projections of ${\cal N}.$
- If Γ is a discrete group, the algebra $\mathcal{U}(\Gamma)$ is the *-regular ring of $\mathcal{N}(\Gamma)$, the von Neumann algebra of Γ . The *-regular ring $\mathcal{U}(\Gamma)$ and its various subrings play an important role in the study of various conjectures, such as the Atiyah Conjecture on l^2 -Betti numbers.
- It is well-known that \mathcal{U} is the *classical ring of quotients* of \mathcal{N} , so the extension $\mathcal{N} \subset \mathcal{U}$ is given by an *Ore localization*

- \bullet The *-algebra ${\cal U}$ coordinatizes the lattice ${\it L}$ of all projections of ${\cal N}.$
- If Γ is a discrete group, the algebra $\mathcal{U}(\Gamma)$ is the *-regular ring of $\mathcal{N}(\Gamma)$, the von Neumann algebra of Γ . The *-regular ring $\mathcal{U}(\Gamma)$ and its various subrings play an important role in the study of various conjectures, such as the Atiyah Conjecture on l^2 -Betti numbers.
- It is well-known that \mathcal{U} is the *classical ring of quotients* of \mathcal{N} , so the extension $\mathcal{N} \subset \mathcal{U}$ is given by an *Ore localization*

Some history Universal localization

For a ring R, let $\mathcal{V}(R)$ be the monoid of isomorphism classes of finitely generated projective right R-modules, with the operation $[A] + [B] = [A \oplus B]$.

Goodearl's question 1995:

Which monoids arise as $\mathcal{V}(R)$ for (von Neumann) regular rings R?

For regular R, $\mathcal{V}(R)$ must be a conical refinement monoid. Wehrung 1998 produced an example of such a monoid of size \aleph_2 which cannot be realized by any regular ring. For a ring R, let $\mathcal{V}(R)$ be the monoid of isomorphism classes of finitely generated projective right R-modules, with the operation $[A] + [B] = [A \oplus B]$.

Goodearl's question 1995:

Which monoids arise as $\mathcal{V}(R)$ for (von Neumann) regular rings R?

For regular R, $\mathcal{V}(R)$ must be a conical refinement monoid. Wehrung 1998 produced an example of such a monoid of size \aleph_2 which cannot be realized by any regular ring. For a ring R, let $\mathcal{V}(R)$ be the monoid of isomorphism classes of finitely generated projective right R-modules, with the operation $[A] + [B] = [A \oplus B]$.

Goodearl's question 1995:

Which monoids arise as $\mathcal{V}(R)$ for (von Neumann) regular rings R?

For regular R, $\mathcal{V}(R)$ must be a conical refinement monoid. Wehrung 1998 produced an example of such a monoid of size \aleph_2 which cannot be realized by any regular ring.

Some history Universal localization

Definition

Let R be a unital ring and Σ a family of square matrices over R. The *universal (or Cohn) localization* of R with respect to Σ is a ring $R\Sigma^{-1}$ with a ring homomorphism $\iota: R \to R\Sigma^{-1}$ such that:

- All matrices $\iota(A)$, for $A \in \Sigma$ are invertible over $R\Sigma^{-1}$.
- 2 If $f: R \to S$ is such that f(A) are invertible for all $A \in \Sigma$ then there is a unique $\tilde{f}: R\Sigma^{-1} \to S$ such that $f = \tilde{f} \circ \iota$.

Example: Any Ore localization is a universal localization. In particular the extension $\mathcal{N} \subset \mathcal{U}$ is a universal localization.

Some history Universal localization

Definition

Let R be a unital ring and Σ a family of square matrices over R. The *universal (or Cohn) localization* of R with respect to Σ is a ring $R\Sigma^{-1}$ with a ring homomorphism $\iota: R \to R\Sigma^{-1}$ such that:

- All matrices $\iota(A)$, for $A \in \Sigma$ are invertible over $R\Sigma^{-1}$.
- 2 If f: R → S is such that f(A) are invertible for all A ∈ Σ then there is a unique f̃: RΣ⁻¹ → S such that f = f̃ ∘ ι.

Example: Any Ore localization is a universal localization. In particular the extension $\mathcal{N} \subset \mathcal{U}$ is a universal localization.

Some history Universal localization

Definition (A-Brustenga)

Let E be a finite directed graph with $|E^0| = d$. Let P(E) be the path algebra of E and $\epsilon \colon P(E) \to K^d$ the augmentation map. Let Σ be the set of all square matrices A over P(E) such that $\epsilon(A)$ is invertible over K^d . The *regular algebra* of E is the K-algebra $Q_K(E) = L_K(E)\Sigma^{-1}$, where $L_K(E)$ is the Leavitt path algebra of E.

Some history Universal localization

Theorem (A-Brustenga)

 $Q_K(E)$ is von Neumann regular and the natural map

 $M(E) \to \mathcal{V}(Q_K(E))$

is a monoid isomorphism.

We want to generalize this to the setting of adaptable separated graphs. Namely we want to build a suitable universal localization

 $Q_K(E,C) = \mathcal{S}_K(E,C)\Sigma^{-1}.$

and show the analogous result for $Q_K(E, C)$.

Some history Universal localization

Theorem (A-Brustenga)

 $Q_K(E)$ is von Neumann regular and the natural map

 $M(E) \to \mathcal{V}(Q_K(E))$

is a monoid isomorphism.

We want to generalize this to the setting of adaptable separated graphs. Namely we want to build a suitable universal localization

$$Q_K(E,C) = \mathcal{S}_K(E,C)\Sigma^{-1}.$$

and show the analogous result for $Q_K(E, C)$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

Some history Universal localization

First step: inverting polynomials in t_i^v

For $v \in E^0$, let $\Sigma_1^v \subseteq v \mathcal{S}_K(E, C)v$ be the set $p(t_i^v) = 1 + \lambda_1 t_i^v + \dots + \lambda_n (t_i^v)^n \in v \mathcal{S}_K(E, C)v$, $(n \ge 1, \lambda_n \ne 0)$. We consider the universal localization $\mathcal{S}_K^1(E, C) := \mathcal{S}_K(E, C) (\bigcup_{v \in E^0} \Sigma_1^v)^{-1}$.

Let $L = K(t_1, t_2, ...,)$ be an infinite purely transcendental extension of K. For each $v \in E^0$ there is a natural unital embedding $L \to v S_K^1(E, C)v$ sending t_i to t_i^v . For $p(t_i) \in L$, we will denote by $p(t_i^v)$ its image under this embedding.

ロ ト 4 回 ト 4 三 ト 4 三 ト 9 4 0

Some history Universal localization

First step: inverting polynomials in t_i^v

For $v \in E^0$, let $\Sigma_1^v \subseteq v \mathcal{S}_K(E, C)v$ be the set $p(t_i^v) = 1 + \lambda_1 t_i^v + \dots + \lambda_n (t_i^v)^n \in v \mathcal{S}_K(E, C)v$, $(n \ge 1, \lambda_n \ne 0)$. We consider the universal localization $\mathcal{S}_K^1(E, C) := \mathcal{S}_K(E, C) (\bigcup_{v \in E^0} \Sigma_1^v)^{-1}$.

Let $L = K(t_1, t_2, ...,)$ be an infinite purely transcendental extension of K. For each $v \in E^0$ there is a natural unital embedding $L \to vS_K^1(E, C)v$ sending t_i to t_i^v . For $p(t_i) \in L$, we will denote by $p(t_i^v)$ its image under this embedding.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Some history Universal localization

We now define sets $\Sigma(p)$ for $p \in I$. We will differentiate between the free and regular cases.

• Take $p \in I_{\text{free}}$. We have a well-defined evaluation map

 $L[x_1,\ldots,x_{k(p)}] \to L[\alpha(p,1),\ldots,\alpha(p,k(p))], \quad f(x_i) \mapsto f(\alpha(p,i)).$

Let $\Sigma(p)$ be the set of all elements of $v^p \mathcal{S}^1_K(E, C) v^p$ given by

 $\Sigma(p) = \{ f(\alpha(p, i)) : f \in L[x_i] \text{ and } x_j \text{ does not divide } f \forall j \}.$

We now define sets $\Sigma(p)$ for $p \in I$. We will differentiate between the free and regular cases.

• Take $p \in I_{\text{free}}$. We have a well-defined evaluation map

$$L[x_1,\ldots,x_{k(p)}] \to L[\alpha(p,1),\ldots,\alpha(p,k(p))], \quad f(x_i) \mapsto f(\alpha(p,i)).$$

Let $\Sigma(p)$ be the set of all elements of $v^p \mathcal{S}^1_K(E, C) v^p$ given by

 $\Sigma(p) = \{ f(\alpha(p,i)) : f \in L[x_i] \text{ and } x_j \text{ does not divide } f \ \forall j \}.$

Some history Universal localization

• Take $p \in I_{\text{reg}}$ and E_p finite. Consider the path *L*-algebra $P_L(E_p) \hookrightarrow v_p S^1_K(E, C) v_p$, where $v_p = \sum_{v \in E_p^0} v$, and the canonical augmentation map

$$\epsilon^p \colon P_L(E_p) \to \bigoplus_{v \in E_p^0} vL.$$

Then $\Sigma(p)$ is the set of all square matrices A over $P_L(E_p)$ such that $\epsilon^p(A)$ is invertible as a matrix over $\bigoplus_{v \in E_n^0} vL$.

Definition

$$Q_K(E,C) := \mathcal{S}_K^1(E,C) \Big(\bigcup_{p \in I} \Sigma(p)\Big)^{-1},$$

is called *the regular algebra* of (E, C).

Some history Universal localization

• Take $p \in I_{\text{reg}}$ and E_p finite. Consider the path *L*-algebra $P_L(E_p) \hookrightarrow v_p S^1_K(E, C) v_p$, where $v_p = \sum_{v \in E_p^0} v$, and the canonical augmentation map

$$\epsilon^p \colon P_L(E_p) \to \bigoplus_{v \in E_p^0} vL.$$

Then $\Sigma(p)$ is the set of all square matrices A over $P_L(E_p)$ such that $\epsilon^p(A)$ is invertible as a matrix over $\bigoplus_{v \in E_n^0} vL$.

Definition

$$Q_K(E,C) := \mathcal{S}_K^1(E,C) \Big(\bigcup_{p \in I} \Sigma(p)\Big)^{-1},$$

is called *the regular algebra* of (E, C).

The results The proof

イロト イポト イヨト イヨト

Outline

- Steinberg algebras
 - Definition
 - Tight representations
 - The algebra isomorphism
- 2 Type semigroups
 - The type semigroup of a Boolean inverse semigroup
 - The type semigroup of an ample groupoid
- 3 The realization problem for von Neumann regular rings
 - Some history
 - Universal localization
- 4 The representation theorem
 - The results
 - The proof

The results The proof

Theorem

Let (E, C) be an adaptable separated graph and let K be a field. Then there exists a von Neumann regular K-algebra $Q_K(E, C)$ and a natural monoid isomorphism

$$M(E,C) \longrightarrow \mathcal{V}(Q_K(E,C)).$$

Theorem

Let M be a finitely generated conical refinement monoid and let K be a field. Then there exists a von Neumann regular (unital) K-algebra R such that $M \cong \mathcal{V}(R)$.

The results The proof

Theorem

Let (E, C) be an adaptable separated graph and let K be a field. Then there exists a von Neumann regular K-algebra $Q_K(E, C)$ and a natural monoid isomorphism

$$M(E,C) \longrightarrow \mathcal{V}(Q_K(E,C)).$$

Theorem

Let *M* be a finitely generated conical refinement monoid and let *K* be a field. Then there exists a von Neumann regular (unital) *K*-algebra *R* such that $M \cong \mathcal{V}(R)$.

The results The proof

(日) (四) (日) (日) (日)

The proof consists in decomposing our original adaptable separated graph (E, C) into a family of non-separated graphs, where we can apply the results from [A-Brustenga], and then reconstruct (E, C), the monoid M(E, C) and the *K*-algebra $Q_K(E, C)$ in terms of the ones corresponding to the above-mentioned family of non-separated graphs.

The reconstruction is done by means of a sequence of pullbacks and pushouts.

The results The proof

The proof consists in decomposing our original adaptable separated graph (E, C) into a family of non-separated graphs, where we can apply the results from [A-Brustenga], and then reconstruct (E, C), the monoid M(E, C) and the *K*-algebra $Q_K(E, C)$ in terms of the ones corresponding to the above-mentioned family of non-separated graphs.

The reconstruction is done by means of a sequence of pullbacks and pushouts.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ○豆 - の々ぐ

The results The proof

Step 1: In this step, for each adaptable separated graph (E, C), we find another (\tilde{E}, \tilde{C}) satisfying "condition (F)" Example:

The results The proof

Step 2: Consider (\tilde{E}, \tilde{C}) with condition (F). We reconstruct (\tilde{E}, \tilde{C}) via successive pullbacks of "building blocks". These are the connected components of the non-separated graphs obtained by choosing a single set $X \in \tilde{C}_v$ at each $v \in \tilde{E}^0$:

The results The proof

Step 3: In this final step, we revert the cover map $\phi: (\tilde{E}, \tilde{C}) \to (E, C)$ described in Step 1 in order to move back from the auxiliary separated graph (\tilde{E}, \tilde{C}) to our original separated graph (E, C). To this end, we use the **crowned push-out** construction. We consider diagrams of the form:

The results The proof

where I and I' are isomorphic (via φ) order-ideals in P with $I \cap I' = \{0\}$.

Then, we define the crowned pushout of (P, I, I', φ) as the coequalizer of the maps ι_1 and $\iota_2 \circ \varphi$.

æ

The results The proof

where *I* and *I'* are isomorphic (via φ) order-ideals in *P* with $I \cap I' = \{0\}$. Then we define the growned pushout of $(P \mid I \mid \varphi)$ as the

Then, we define the crowned pushout of (P, I, I', φ) as the coequalizer of the maps ι_1 and $\iota_2 \circ \varphi$.

ヘロト 人間 とくほとくほとう

э.

We build a finite chain of adaptable separated graphs and cover maps

$$(\tilde{E}, \tilde{C}) = (\tilde{E}_n, \tilde{C}_n) \xrightarrow{\phi_n} (\tilde{E}_{n-1}, \tilde{C}_{n-1}) \xrightarrow{\phi_{n-1}} \dots \xrightarrow{\phi_1} (\tilde{E}_0, \tilde{C}_0) = (E, C),$$

satisfying that each $M(\tilde{E}_{k-1}, \tilde{C}_{k-1})$ is the crowned push-out of a quadruple determined by $(\tilde{E}_k, \tilde{C}_k)$ and ϕ_k .

The realization theorem is shown inductively along this chain.

イロト イポト イヨト イヨト

We build a finite chain of adaptable separated graphs and cover maps

$$(\tilde{E}, \tilde{C}) = (\tilde{E}_n, \tilde{C}_n) \xrightarrow{\phi_n} (\tilde{E}_{n-1}, \tilde{C}_{n-1}) \xrightarrow{\phi_{n-1}} \dots \xrightarrow{\phi_1} (\tilde{E}_0, \tilde{C}_0) = (E, C),$$

satisfying that each $M(\tilde{E}_{k-1}, \tilde{C}_{k-1})$ is the crowned push-out of a quadruple determined by $(\tilde{E}_k, \tilde{C}_k)$ and ϕ_k .

The realization theorem is shown inductively along this chain.

<ロ> (四) (四) (日) (日) (日)

The results The proof

<ロト <回 > < 注 > < 注 > 、

∃ <2 <</p>

THANK YOU VERY MUCH FOR YOUR ATTENTION!!!